Estimate $\tau(G)$. In particular, is it true that if $G$ has $n$ vertices then \[\tau(G) \leq n-c\sqrt{n\log n}\] for some absolute constant $c>0$?

OPEN

For a graph $G$ let $\tau(G)$ denote the minimal number of vertices that include at least one from each maximal clique of $G$ (sometimes called the clique transversal number).

Estimate $\tau(G)$. In particular, is it true that if $G$ has $n$ vertices then \[\tau(G) \leq n-c\sqrt{n\log n}\] for some absolute constant $c>0$?

A problem of Erdős, Gallai, and Tuza, who proved that
\[\tau(G) \leq n-\sqrt{2n}+O(1).\]

This would be best possible, since there exist triangle-free graphs with all independent sets of size $O(\sqrt{n\log n})$, which follows from the lower bound for $R(3,k)$ by Kim [Ki95] (see [165]).

Indeed, Erdős, Gallai, and Tuza speculate that if $f(n)$ is the largest $k$ such that every triangle-free graph on $n$ vertices contains an independent set on $f(n)$ vertices, then $\tau(G)\leq n-f(n)$.

In [Er94] and [Er99] Erdős asks for a weaker upper bound $\tau(G) \leq n-\omega(n)\sqrt{n}$ for any $\omega(n)\to \infty$.

See also [611], this entry and and this entry in the graphs problem collection.