Logo
All Random Solved Random Open
OPEN
For any graph $H$ is there some $c=c(H)>0$ such that every graph $G$ on $n$ vertices that does not contain $H$ as an induced subgraph contains either a complete graph or independent set on $\geq n^c$ vertices?
Conjectured by Erdős and Hajnal [ErHa89], who proved that a complete graph or independent set must exist on \[\geq \exp(c_H\sqrt{\log n})\] many vertices, where $c_H>0$ is some constant. This was improved by Bucić, Nguyen, Scott, and Seymour [BNSS23] to \[\geq \exp(c_H\sqrt{\log n\log\log n}).\]

See also the entry in the graphs problem collection.