It may be true that there are $\gg n$ many such points, or that this is true on average. In [Er97e] Erdős offers \$500 for a solution to this problem, but it is unclear whether he intended this for proving the existence of a single such point or for $\gg n$ many such points.
In [Er97e] Erdős wrote that he initially 'overconjectured' and thought that the answer to this problem is the same as for the number of distinct distances between all pairs (see [89]), but this was disproved by Harborth. It could be true that the answers are the same up to an additive factor of $n^{o(1)}$.
The best known bound is \[\gg n^{c-o(1)},\] due to Katz and Tardos [KaTa04], where \[c=\frac{48-14e}{55-16e}=0.864137\cdots.\]