Indeed, the answer is yes, as proved by Banks, Freiberg, and Turnage-Butterbaugh [BFT15] with an application of the Maynard-Tao machinery concerning bounded gaps between primes [Ma15]. They in fact prove that, for any $m\geq 1$, there are infinitely many $n$ such that \[d_n<d_{n+1}<\cdots <d_{n+m}\] and infinitely many $n$ such that \[d_n> d_{n+1}>\cdots >d_{n+m}.\]