All Random Solved Random Open
SOLVED - $250
Let $\alpha$ be the infinite ordinal $\omega^\omega$. Is it true that in any red/blue colouring of the edges of $K_\alpha$ there is either a red $K_\alpha$ or a blue $K_3$?
A problem of Erdős and Rado. For comparison, Specker [Sp57] proved this property holds when $\alpha=\omega^2$ and false when $\alpha=\omega^n$ for $3\leq n<\omega$.

This is true, and was proved by Chang [Ch72]. Milner modified his proof to prove that this remains true if we replace $K_3$ by $K_m$ for all finite $m<\omega$ (a shorter proof was found by Larson [La73]).

See also [591] and [592].