Let $F_1$ and $F_2$ be the union of stars. More precisely, let $F_1=\cup_{i\leq s} K_{1,n_i}$ and $F_2=\cup_{j\leq t} K_{1,m_j}$. Prove that \[\hat{R}(F_1,F_2) = \sum_{2\leq k\leq s+2}\max\{n_i+m_j-1 : i+j=k\}.\]
Let $F_1$ and $F_2$ be the union of stars. More precisely, let $F_1=\cup_{i\leq s} K_{1,n_i}$ and $F_2=\cup_{j\leq t} K_{1,m_j}$. Prove that \[\hat{R}(F_1,F_2) = \sum_{2\leq k\leq s+2}\max\{n_i+m_j-1 : i+j=k\}.\]