If $G$ has $n$ vertices and maximum degree $d$ then prove that \[\hat{R}(G)\ll_d n.\]
If $G$ has $n$ vertices and maximum degree $d$ then prove that \[\hat{R}(G)\ll_d n.\]
This was disproved for $d=3$ by Rödl and Szemerédi [RoSz00], who constructed a graph on $n$ vertices with maximum degree $3$ such that \[\hat{R}(G)\gg n(\log n)^{c}\] for some absolute constant $c>0$. Tikhomirov [Ti22b] has improved this to \[\hat{R}(G)\gg n\exp(c\sqrt{\log n}).\] It is an interesting question how large $\hat{R}(G)$ can be if $G$ has maximum degree $3$. Kohayakawa, Rödl, Schacht, and Szemerédi [KRSS11] proved an upper bound of $\leq n^{5/3+o(1)}$ and Conlon, Nenadov, and Trujić [CNT22] proved $\ll n^{8/5}$. The best known upper bound of $\leq n^{3/2+o(1)}$ is due to Draganić and Petrova [DrPe22].