Logo
All Random Solved Random Open
OPEN
Let $a_n\in \mathbb{R}$ be such that $\sum_n \lvert a_n\rvert^2=\infty$ and $\lvert a_n\rvert=o(1/\sqrt{n})$. Is it true that, for almost all $\epsilon_n=\pm 1$, there exists some $z$ with $\lvert z\rvert=1$ (depending on the choice of signs) such that \[\sum_n \epsilon_n a_n z^n\] converges?
It is unclear to me whether Erdős also intended to assume that $\lvert a_{n+1}\rvert\leq \lvert a_n\rvert$.

It is 'well known' that, for almost all $\epsilon_n=\pm 1$, the series diverges for almost all $\lvert z\rvert=1$ (assuming only $\sum \lvert a_n\rvert^2=\infty$).

Dvoretzky and Erdős [DE59] showed that if $\lvert a_n\rvert >c/\sqrt{n}$ then, for almost all $\epsilon_n=\pm 1$, the series diverges for all $\lvert z\rvert=1$.