OPEN
For any $t\in (0,1)$ let $t=\sum_{k=1}^\infty \epsilon_k(t)2^{-k}$ (where $\epsilon_k(t)\in \{0,1\}$). Does there exist some constant $C>0$ such that, for almost all $t\in (0,1)$,
\[\max_{\lvert z\rvert=1}\left\lvert \sum_{k\leq n}\epsilon_k(t)z^k\right\rvert=(C+o(1))\sqrt{n\log n}?\]
Salem and Zygmund
[SZ54] proved that $\sqrt{n\log n}$ is the right order of magnitude, but not an asymptotic.