For any $t\in (0,1)$ let $t=\sum_{k=1}^\infty \epsilon_k(t)2^{-k}$ (where $\epsilon_k(t)\in \{0,1\}$). If $S_n(t)$ is the number of roots of $\sum_{1\leq k\leq n}\epsilon_k(t)z^k$ in $\lvert z\rvert \leq1$ then is it true that, for almost all $t\in (0,1)$, \[\lim_{n\to \infty}\frac{S_n(t)}{n}=\frac{1}{2}?\]