Logo
All Random Solved Random Open
OPEN
Let $f(z)$ be an entire function, not a polynomial. Does there exist a locally rectifiable path $C$ tending to infinity such that, for every $\lambda>0$, the integral \[\int_C \lvert f(z)\rvert^{-\lambda} \mathrm{d}z\] is finite?
Huber [Hu57] proved that for every $\lambda>0$ there is such a path $C_\lambda$ such that this integral is finite.
Additional thanks to: Cedric Pilatte and Desmond Weisenberg