All Random Solved Random Open
Let $A,B\subseteq \{1,\ldots,N\}$ be such that all the products $ab$ with $a\in A$ and $b\in B$ are distinct. Is it true that \[\lvert A\rvert \lvert B\rvert \ll \frac{N^2}{\log N}?\]
This would be best possible, for example letting $A=[1,N/2]\cap \mathbb{N}$ and $B=\{ N/2<p\leq N: p\textrm{ prime}\}$.

See also [425].

This is true, and was proved by Szemerédi [Sz76].

Additional thanks to: Mehtaab Sawhney