OPEN
Let $f(k)$ be the minimal $N$ such that if $\{1,\ldots,N\}$ is $k$-coloured then there is a monochromatic solution to $a+b=c$. Estimate $f(k)$. In particular, is it true that $f(k) < c^k$ for some constant $c>0$?
Schur proved that $f(k)<ek!$. See also
[183].