OPEN
Let $a_1,\ldots,a_r,b_1,\ldots,b_r\in \mathbb{N}$ such that $\sum_{i}\frac{1}{a_i}>1$. For any finite sequence of $n$ (not necessarily distinct) integers $A=(x_1,\ldots,x_n)$ let $T(A)$ denote the sequence of length $rn$ given by
\[(a_ix_j+b_i)_{1\leq j\leq n, 1\leq i\leq r}.\]
Prove that, if $A_1=(1)$ and $A_{i+1}=T(A_i)$, then there must be some $A_k$ with repeated elements.
Erdős and Graham write that 'it is surprising that [this problem] offers difficulty'.
The original formulation of this problem had an extra condition on the minimal element of the sequence $A_k$ being large, but Ryan Alweiss has pointed out that is trivially always satisfied since the minimal element of the sequence must grow by at least $1$ at each stage.