All Random Solved Random Open
Let $b_1=1$ and in general let $b_{n+1}$ be the least integer which is not of the shape $\sum_{u\leq i\leq v}b_i$ for some $1\leq u\leq v\leq n$. How does this sequence grow?
The sequence is OEIS A002048 and begins \[1,2,4,5,8,10,14,15,16,21,22,23,25,\ldots.\] In general, if $a_1<a_2<\cdots$ is a sequence so that no $a_n$ is a sum of consecutive $a_i$s, then must the density of the $a_i$ be zero? What about the lower density?