All Random Solved Random Open
Prove the following for all large $x$: there is a choice of congruence classes $a_p$ for all primes $p\leq x$ and a decomposition $\{p\leq x\}=A\sqcup B$ into two non-empty sets such that, for all $n<x$, there exist some $p\in A$ and $q\in B$ such that $n\equiv a_p\pmod{p}$ and $n\equiv a_q\pmod{q}$.
This is what I assume the intended problem is, although the presentation in [ErGr80] is missing some crucial quantifiers, so I may have misinterpreted it.