Logo
All Random Solved Random Open
OPEN
Let $N\geq 1$ and $A\subset \{1,\ldots,N\}$ be a Sidon set. Is it true that, for any $\epsilon>0$, there exist $M=M(\epsilon)$ and $B\subset \{N+1,\ldots,M\}$ such that $A\cup B\subset \{1,\ldots,M\}$ is a Sidon set of size at least $(1-\epsilon)M^{1/2}$?