OPEN
Are there two infinite sets $A$ and $B$ such that $A+B$ agrees with the set of prime numbers up to finitely many exceptions?
A problem of Ostmann, sometimes known as the 'inverse Goldbach problem'. The answer is surely no. The best result in this direction is due to Elsholtz and Harper
[ElHa15], who showed that if $A,B$ are such sets then for all large $x$ we must have
\[\frac{x^{1/2}}{\log x\log\log x} \ll \lvert A \cap [1,x]\rvert \ll x^{1/2}\log\log x\]
and similarly for $B$.
Elsholtz [El01] has proved there are no infinite sets $A,B,C$ such that $A+B+C$ agrees with the set of prime numbers up to finitely many exceptions.
See also [432].