All Random Solved Random Open
Fix some integer $n$ and define a decreasing sequence in $[1,n)$ by $a_1=n-1$ and, for $k\geq 2$, letting $a_k$ be the greatest integer in $[1,a_{k-1})$ such that all of the prime factors of $a_k$ are $>n-a_k$. Is it true that, for sufficiently large $n$, not all of this sequence can be prime?
Erdős and Graham write 'preliminary calculations made by Selfridge indicate that this is the case but no proof is in sight'. For example if $n=8$ we have $a_1=7$ and $a_2=5$ and then must stop.