All Random Solved Random Open
Are there infinitely many integers not of the form $n-\phi(n)$?
Asked by Erdős and Sierpiński. It follows from the Goldbach conjecture that every odd number can be written as $n-\phi(n)$. What happens for even numbers?

Erdős [Er73b] has shown that a positive density set of integers cannot be written as $\sigma(n)-n$.

This is true, as shown by Browkin and Schinzel [BrSc95], who show that any integer of the shape $2^{k}\cdot 509203$ is not of this form. It seems to be open whether there is a positive density set of integers not of this form.

Additional thanks to: Stefan Steinerberger