Can one show that there exists an $\epsilon>0$ such that there are infinitely many $n$ where $m+\epsilon \omega(m)\leq n$ for all $m<n$?
Can one show that there exists an $\epsilon>0$ such that there are infinitely many $n$ where $m+\epsilon \omega(m)\leq n$ for all $m<n$?
Erdős also believed that $\Omega$, the count of the number of prime factors with multiplicity), should have infinitely many barriers. Selfridge found the largest barrier for $\Omega$ which is $<10^5$ is $99840$.
In [ErGr80] this problem is suggested as a way of showing that the iterated behaviour of $n\mapsto n+\omega(n)$ eventually settles into a single sequence, regardless of the starting value of $n$ (see also [412] and [414]).
Erdős and Graham report it could be attacked by sieve methods, but 'at present these methods are not strong enough'.