Is there a prime $p$ and an infinite sequence $a_1<a_2<\cdots$ such that if $p^{m_k}$ is the highest power of $p$ dividing $\sum_{i\leq k}a_i!$ then $m_k\to \infty$?
Is there a prime $p$ and an infinite sequence $a_1<a_2<\cdots$ such that if $p^{m_k}$ is the highest power of $p$ dividing $\sum_{i\leq k}a_i!$ then $m_k\to \infty$?