OPEN
Are the only solutions to
\[n!=x^2-1\]
when $n=4,5,7$?
The Brocard-Ramanujan conjecture. Erdős and Graham describe this as an old conjecture, and write it 'is almost certainly true but it is intractable at present'.
Overholt [Ov93] has shown that this has only finitely many solutions assuming a weak form of the abc conjecture.
There are no other solutions below $10^9$ (see the OEIS page).