OPEN
Is there an absolute constant $c>0$ such that, for all $1\leq k< n$, the binomial coefficient $\binom{n}{k}$ has a divisor in $(cn,n]$?
Erdős once conjectured that $\binom{n}{k}$ must always have a divisor in $(n-k,n]$, but this was disproved by Schinzel and Erdős
[Sc58].