All Random Solved Random Open
Let \[F(n) = \max_{\substack{m<n\\ m\textrm{ composite}}} m+p(m),\] where $p(m)$ is the least prime divisor of $m$. Is it true that $F(n)>n$ for all sufficiently large $n$? Does $F(n)-n\to \infty$ as $n\to\infty$?
A question of Erdős, Eggleton, and Selfridge, who write that 'plausible conjectures on primes' imply that $F(n)\leq n$ for only finitely many $n$, and in fact it is possible that this quantity is always at least $n+(1-o(1))\sqrt{n}$ (note that it is trivially $\leq n+\sqrt{n}$).