OPEN

Let $u\leq v$ be such that the largest prime dividing $\prod_{u\leq m\leq v}m$ appears with exponent at least $2$. Is it true that $v-u=v^{o(1)}$? Can $v-u$ be arbitrarily large?

Erdős and Graham report it follows from results of Ramachandra that $v-u\leq v^{1/2+o(1)}$.

See also [380].