Logo
All Random Solved Random Open
OPEN
We call an interval $[u,v]$ 'bad' if the greatest prime factor of $\prod_{u\leq m\leq v}m$ occurs with an exponent greater than $1$. Let $B(x)$ count the number of $n\leq x$ which are contained in at least one bad interval. Is it true that \[B(x)\sim \#\{ n\leq x: p\mid n\rightarrow p\leq n^{1/2}\}?\]
Erdős and Graham only knew that $B(x) > x^{1-o(1)}$. Similarly, we call an interval $[u,v]$ 'very bad' if $\prod_{u\leq m\leq v}m$ is powerful. The number of integers $n\leq x$ contained in at least one very bad interval should be $\ll x^{1/2}$. In fact, it should be asymptotic to the number of powerful numbers $\leq x$.

See also [382].