Can a lacunary set $A\subset\mathbb{N}$ be an essential component?

SOLVED

We say that $A\subset \mathbb{N}$ is an essential component if $d_s(A+B)>d_s(B)$ for every $B\subset \mathbb{N}$ with $0<d_s(B)<1$ where $d_s$ is the Schnirelmann density.

Can a lacunary set $A\subset\mathbb{N}$ be an essential component?

The answer is no by Ruzsa [Ru87], who proved that if $A$ is an essential component then there exists some constant $c>0$ such that $\lvert A\cap \{1,\ldots,N\}\rvert \geq (\log N)^{1+c}$ for all large $N$.