The truth is probably $F(n)\gg (\log n)^2$ for all $n$. Erdős [Er76d] conjectured that, for every $\epsilon>0$, there are infinitely many $n$ such that $F(n) <(\log n)^{2+\epsilon}$.
Pasten [Pa24b] has proved that \[F(n) \gg \frac{(\log\log n)^2}{\log\log\log n}.\] The largest prime factors of $n(n+1)$ are listed as A074399 in the OEIS.