All Random Solved Random Open
Are there any triples of consecutive positive integers all of which are powerful (i.e. if $p\mid n$ then $p^2\mid n$)?
Erdős originally asked Mahler whether there are infinitely many pairs of consecutive powerful numbers, but Mahler immediately observed that the answer is yes from the infinitely many solutions to the Pell equation $x^2=8y^2+1$.
Additional thanks to: Zachary Chase