Logo
All Random Solved Random Open
SOLVED
Let $A\subseteq \mathbb{R}^2$ be a measurable set with infinite measure. Must $A$ contain the vertices of an isosceles trapezoid of area $1$? What about an isosceles triangle, or a right-angled triangle, or a cyclic quadrilateral, or a polygon with congruent sides?
Erdős and Mauldin (unpublished) claim that this is true for trapezoids in general, but fails for parallelograms (a construction showing this fails for parallelograms was provided by Kovač) [Ko23].

Kovač and Predojević [KoPr24] have proved that this is true for cyclic quadrilaterals - that is, every set with infinite measure contains four distinct points on a circle such that the quadrilateral determined by these four points has area $1$. They also prove that there exists a set of infinite measure such that every convex polygon with congruent sides and all vertices in the set has area $<1$.

Koizumi [Ko25] has resolved this question, proving that any set with infinite measure must contain the vertices of an isosceles trapezoid, an isosceles triangle, and a right-angled triangle, all of area $1$.

Additional thanks to: Vjekoslav Kovac