Logo
All Random Solved Random Open
OPEN
Let $A=\{1,2,4,8,13,21,31,45,66,81,97,\ldots\}$ be the greedy Sidon sequence: we begin with $1$ and iteratively include the next smallest integer that preserves the Sidon property (i.e. there are no non-trivial solutions to $a+b=c+d$). What is the order of growth of $A$? Is it true that \[\lvert A\cap \{1,\ldots,N\}\rvert \gg N^{1/2-\epsilon}\] for all $\epsilon>0$ and large $N$?
It is trivial that this sequence grows at least like $\gg N^{1/3}$. Erdős and Graham [ErGr80] also asked about the difference set $A-A$, whether this has positive density, and whether this contains $22$. It does contain $22$, since $a_{15}-a_{14}=204-182=22$. The smallest integer which is unknown to be in $A-A$ is $33$ (see A080200). It may be true that all or almost all integers are in $A-A$.

This sequence is at OEIS A005282.

See also [156].

Additional thanks to: Vjekoslav Kovac