Logo
All Random Solved Random Open
OPEN
Suppose $A\subseteq \{1,\ldots,N\}$ is such that if $a,b\in A$ then $a+b\nmid ab$. Can $A$ be 'substantially more' than the odd numbers?

What if $a,b\in A$ with $a\neq b$ implies $a+b\nmid 2ab$? Must $\lvert A\rvert=o(N)$?

The connection to unit fractions comes from the observation that $\frac{1}{a}+\frac{1}{b}$ is a unit fraction if and only if $a+b\mid ab$.