Logo
All Random Solved Random Open
OPEN
Let $S(N)$ count the number of distinct sums of the form $\sum_{n\in A}\frac{1}{n}$ for $A\subseteq \{1,\ldots,N\}$. Estimate $S(N)$.
Bleicher and Erdős [BlEr75] proved the lower bound \[\frac{N}{\log N}\prod_{i=3}^k\log_iN\leq \frac{\log S(N)}{\log 2},\] valid for $k\geq 4$ and $\log_kN\geq k$, and also [BlEr76b] proved the upper bound \[\log S(N)\leq \log_r N\left(\frac{N}{\log N} \prod_{i=3}^r \log_iN\right),\] valid for $r\geq 1$ and $\log_{2r}N\geq 1$. (In these bounds $\log_in$ denotes the $i$-fold iterated logarithm.)

See also [321].

Additional thanks to: Boris Alexeev and Dustin Mixon