This is not true in general, as shown by Sándor [Sa97], who observed that the proper divisors of $120$ form a counterexample. More generally, Sándor shows that for any $n\geq 2$ there exists a finite set $A\subseteq \mathbb{N}\backslash\{1\}$ with $\sum_{k\in A}\frac{1}{k}<n$ and no partition into $n$ parts each of which has $\sum_{k\in A_i}\frac{1}{k}<1$.
The minimal counterexample is $\{2,3,4,5,6,7,10,11,13,14,15\}$, found by Tom Stobart.