SOLVED

Let $A(N)$ denote the maximal cardinality of $A\subseteq \{1,\ldots,N\}$ such that $\sum_{n\in S}\frac{1}{n}\neq 1$ for all $S\subseteq A$. Estimate $A(N)$.

Erdős and Graham believe the answer is $A(N)=(1+o(1))N$. Croot [Cr03] disproved this, showing the existence of some constant $c<1$ such that $A(N)<cN$ for all large $N$. It is trivial that $A(N)\geq (1-\frac{1}{e}+o(1))N$.

Liu and Sawhney [LiSa24] have proved that $A(N)=(1-1/e+o(1))N$.