SOLVED
Let $N\geq 1$ and let $k(N)$ be maximal such that there are $k$ disjoint $A_1,\ldots,A_k\subseteq \{1,\ldots,N\}$ with $\sum_{n\in A_i}\frac{1}{n}=1$ for all $i$. Estimate $k(N)$. Is it true that $k(N)=o(\log N)$?
More generally, how many disjoint $A_i$ can be found in $\{1,\ldots,N\}$ such that the sums $\sum_{n\in A_i}\frac{1}{n}$ are all equal? Using sunflowers it can be shown that there are at least $N\exp(-O(\sqrt{\log N}))$ such sets.
Hunter and Sawhney have observed that Theorem 3 of Bloom [Bl23] (coupled with the trivial greedy approach) implies that $k(N)=(1-o(1))\log N$.