Does this process always terminate if $x$ has odd denominator and $A$ is the set of odd numbers? More generally, for which pairs $x$ and $A$ does this process terminate?
Does this process always terminate if $x$ has odd denominator and $A$ is the set of odd numbers? More generally, for which pairs $x$ and $A$ does this process terminate?
Graham [Gr64b] has shown that $\frac{m}{n}$ is the sum of distinct unit fractions with denominators $\equiv a\pmod{d}$ if and only if \[\left(\frac{n}{(n,(a,d))},\frac{d}{(a,d)}\right)=1.\] Does the greedy algorithm always terminate in such cases?
Graham [Gr64c] has also shown that $x$ is the sum of distinct unit fractions with square denominators if and only if $x\in [0,\pi^2/6-1)\cup [1,\pi^2/6)$. Does the greedy algorithm for this always terminate? Erdős and Graham believe not - indeed, perhaps it fails to terminate almost always.