All Random Solved Random Open
Is there an infinite Lucas sequence $a_0,a_1,\ldots,$ where $(a_0,a_1)=1$ and $a_{n+2}=a_{n+1}+a_n$ for $n\geq 0$ such that all $a_k$ are composite, and yet no integer has a common factor with every term of the sequence?
Whether such a composite Lucas sequence even exists was open for a while, but using covering systems Graham [Gr64] showed that \[a_0 = 1786772701928802632268715130455793\] \[a_1 = 1059683225053915111058165141686995\] generate such a sequence. This problem asks whether one can have a composite Lucas sequence without 'an underlying system of covering congruences responsible'.