SOLVED
If a finite system of $r$ congruences $\{ a_i\pmod{n_i} : 1\leq i\leq r\}$ covers $2^r$ consecutive integers then it covers all integers.
This is best possible as the system $2^{i-1}\pmod{2^i}$ shows. This was proved indepedently by Selfridge and Crittenden and Vanden Eynden
[CrVE70].