OPEN

How fast can $a_n\to \infty$ grow if
\[\sum\frac{1}{a_n}\quad\textrm{and}\quad\sum\frac{1}{a_n-1}\]
are both rational?

Cantor observed that $a_n=\binom{n}{2}$ is such a sequence. If we replace $-1$ by a different constant then higher degree polynomials can be used - for example if we consider $\sum_{n\geq 2}\frac{1}{a_n}$ and $\sum_{n\geq 2}\frac{1}{a_n-12}$ then $a_n=n^3+6n^2+5n$ is an example of both series being rational.

Kovač [Ko24c] constructs a sequence $a_n$ with this property which grows exponentially with $n$: \[a_n > 1.01^n.\]