All Random Solved Random Open
Let $A\subseteq \mathbb{N}$ be an infinite set such that $\lvert A\cap \{1,\ldots,N\}\rvert=o(N)$. Is it true that \[\limsup_{N\to \infty}\frac{\lvert (A+A)\cap \{1,\ldots,N\}\rvert}{\lvert A\cap \{1,\ldots,N\}\rvert}\geq 3?\]
Erdős writes it is 'easy to see' that this holds with $3$ replaced by $2$, and that $3$ would be best possible here. We do not see an easy argument that this holds with $2$, but this follows e.g. from the main result of Mann [Ma60].

The answer is yes, proved by Freiman [Fr73].

Additional thanks to: Zachary Chase