Logo
All Random Solved Random Open
SOLVED
Let $f:\mathbb{N}\to \{-1,1\}$ be a multiplicative function. Is it true that \[ \lim_{N\to \infty}\frac{1}{N}\sum_{n\leq N}f(n)\] always exists?
Wintner observed that if $f$ can take complex values on the unit circle then the limit need not exist. The answer is yes, as proved by Wirsing [Wi67], and generalised by Halász [Ha68].