All Random Solved Random Open
Let $n_1<n_2<\cdots$ be the sequence of integers which are the sum of two squares. Explore the behaviour of (i.e. find good upper and lower bounds for) the consecutive differences $n_{k+1}-n_k$.
Erdős [Er51] proved that, for infinitely many $k$, \[ n_{k+1}-n_k \gg \frac{\log n_k}{\sqrt{\log\log n_k}}.\] Richards [Ri82] improved this to \[\limsup_{k\to \infty} \frac{n_{k+1}-n_k}{\log n_k} \geq 1/4.\] The constant $1/4$ here has been improved, most lately to $0.868\cdots$ by Dietmann, Elsholtz, Kalmynin, Konyagin, and Maynard [DEKKM22]. The best known upper bound is due to Bambah and Chowla [BaCh47], who proved that \[n_{k+1}-n_k \ll n_k^{1/4}.\]