Logo
All Random Solved Random Open
OPEN
Let $n\geq 4$. Are there $n$ points in $\mathbb{R}^2$, no three on a line and no four on a circle, such that all pairwise distances are integers?
Anning and Erdős [AnEr45] proved there cannot exist an infinite such set. Harborth constructed such a set when $n=5$. The best construction to date, due to Kreisel and Kurz [KK08], has $n=7$.

Ascher, Braune, and Turchet [ABT20] have shown that there is a uniform upper bound on the size of such a set, conditional on the Bombieri-Lang conjecture. Greenfeld, Iliopoulou, and Peluse [GIP24] have shown (unconditionally) that any such set must be very sparse, in that if $S\subseteq [-N,N]^2$ has no three on a line and no four on a circle, and all pairwise distances integers, then \[\lvert S\rvert \ll (\log N)^{O(1)}.\]

See also [130].