Logo
All Random Solved Random Open
OPEN
What is the smallest $k$ such that in any permutation of $\mathbb{Z}$ there must exist a monotone $k$-term arithmetic progression $x_1<\cdots<x_k$?
Geneson [Ge19] proved that $k\leq 5$. Adenwalla [Ad22] proved that $k\leq 4$.

See also [194] and [196].

Additional thanks to: Boris Alexeev and Dustin Mixon