Is it true that, for every $\mathcal{F}$, there exists $G\in\mathcal{F}$ such that \[\mathrm{ex}(n;G)\ll_{\mathcal{F}}\mathrm{ex}(n;\mathcal{F})?\]

OPEN

If $\mathcal{F}$ is a finite set of finite graphs then $\mathrm{ex}(n;\mathcal{F})$ is the maximum number of edges a graph on $n$ vertices can have without containing any subgraphs from $\mathcal{F}$. Note that it is trivial that $\mathrm{ex}(n;\mathcal{F})\leq \mathrm{ex}(n;G)$ for every $G\in\mathcal{F}$.

Is it true that, for every $\mathcal{F}$, there exists $G\in\mathcal{F}$ such that \[\mathrm{ex}(n;G)\ll_{\mathcal{F}}\mathrm{ex}(n;\mathcal{F})?\]

A problem of Erdős and Simonovits.

This is trivially true if $\mathcal{F}$ does not contain any bipartite graphs, since by the Erdős-Stone theorem if $H\in\mathcal{F}$ has minimal chromatic number $r\geq 2$ then \[\mathrm{ex}(n;H)=\mathrm{ex}(n;\mathcal{F})=\left(\frac{r-2}{r-1}+o(1)\right)\binom{n}{2}.\] Erdős and Simonovits observe that this is false for infinite families $\mathcal{F}$, e.g. the family of all cycles.

See also [575] and the entry in the graphs problem collection.