All Random Solved Random Open
In any $2$-colouring of $\mathbb{R}^2$, for all but at most one triangle $T$, there is a monochromatic congruent copy of $T$.
For some colourings a single equilateral triangle has to be excluded, considering the colouring by alternating strips. Shader [Sh76] has proved this is true if we just consider a single right-angled triangle.