Logo
All Random Solved Random Open
SOLVED
Is it true that for every $\epsilon>0$ and integer $t\geq 1$, if $N$ is sufficiently large and $A$ is a subset of $[t]^N$ of size at least $\epsilon t^N$ then $A$ must contain a combinatorial line $P$ (a set $P=\{p_1,\ldots,p_t\}$ where for each coordinate $1\leq j\leq t$ the $j$th coordinate of $p_i$ is either $i$ or constant).
The 'density Hales-Jewett' problem. This was proved by Furstenberg and Katznelson [FuKa91]. A new elementary proof, which gives quantitative bounds, was proved by the Polymath project [Po09].