Does $c(n)^{1/n}\to \alpha$ for some $\alpha <2$?
Does $c(n)^{1/n}\to \alpha$ for some $\alpha <2$?
Solved by Bradač [Br24], who proved that $\alpha=\lim c(n)^{1/n}$ exists and \[\alpha \leq 2^{H(1/3)}=1.8899\cdots,\] where $H(\cdot)$ is the binary entropy function. Seymour's construction proves that $\alpha\geq 3^{1/3}=1.442\cdots$. Bradač conjectures that this lower bound is the true value of $\alpha$.